quarta-feira, 7 de agosto de 2019



Denomina-se matéria degenerada, ou ainda gás degenerado, aquela na qual uma fração importante da pressão provém do princípio de exclusão de Pauli, que estabelece que dois férmions não podem ter os mesmos números quânticos.
Tal "gás" não obedece às leis clássicas segundo as quais a pressão de um gás é proporcional à sua temperatura e densidade.
Enrico Fermi e Paul Adrien Maurice Dirac provaram que, a uma densidade muito alta, a pressão aumenta rapidamente até o ponto em que ela passa a independer da temperatura do gás. Neste ponto, o gás passa a agir quase como um sólido.
Na astronomia, este gás é encontrado nas estrelas anãs brancas e é importante no tratamento tanto de estrelas residuais densas quanto das novas que as geram[1]. É conceito importante em cosmologia e na evolução do universo no tempo[2], com relações com a teoria da relatividade[3] e para o modelo "big bang" e na detecção de objetos estelares.[4]
Dependendo das condições, a degeneração de diferentes partículas pode contribuir com a pressão de um objeto compacto, de modo que uma anã branca está sustentada pela degeneração dos elétrons, ainda que uma estrela de nêutrons não colapse devido ao efeito combinado da pressão de nêutrons degenerados e da pressão devida à ação repulsiva da interação forte entre bárions.
Estas restrições nos estados quânticos fazem com que as partículas adquiram momentos muito elevados, já que não têm outras posições do espaço de fases onde situar-se; pode-se dizer que o gás, ao não poder ocupar mais posições, se vê obrigado a estender-se no espaço de momentos com a limitação da velocidade c (velocidade da luz). Assim, ao estar tão comprimida a matéria, os estados energeticamente baixos preenchem-se em seguida, pelo que muitas partículas não têm outra possibilidade senão colocar-se em estados muito energéticos, o que envolve uma pressão adicional de origem quântica. Se a matéria está suficientemente degenerada, esta citada pressão será dominante, e muito, sobre todas as demais contribuições. Esta pressão é, além disto, independente da temperatura e unicamente dependente da densidade.
Estas características implicam tratamento termodinâmico bastante diverso e adequado às pressões e campos gravitacionais envolvidos[5], assim como o comportamento das reações nucleares na proximidade de tais massas.[6][7]
Necessita-se de densidades para chegar aos estados de degeneração da matéria. Para a degeneração de elétrons se requer uma densidade em torno dos 106 g/cm³, para a de nêutrons necessita-se muito mais ainda, 1014 g/cm³.

    Tratamento matemático da degeneração[editar | editar código-fonte]

    Para calcular o número de partículas fermiônicas em função de seu momento, se usará a distribuição de Fermi-Dirac (ver estatística de Fermi-Dirac) da seguinte maneira:
    x






    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde n(p) é o número de partículas com momento linear p. O coeficiente inicial 2 é a dupla degeneração de spin dos férmions. A primeira fração é o volume do espaço de fases em um diferencial de momentos dividido pelo volume de uma determinada seção no espaço. A h³ é a constante de Planck ao cubo que, como se tem dito, significa o volume dessas seções nas quais cabem até duas partículas com spins opostos. O último termo fracionário é o denominado fator de preenchimentoK é a constante de BoltzmannT a temperatura, Ep a energia cinética de uma partícula com momento p e ψ o parâmetro de degeneração, que é dependente da densidade e da temperatura.
    • fator de preenchimento indica a probabilidade de este preencher um estado. Seu valor está compreendido entre 0 (todos vazios) e 1 (todos preenchidos).
    • parâmetro de degeneração indica o grau de degeneração das partículas. Se toma valores grandes e negativos a matéria estará em um regime de gás ideal. Se está próximo a 0 a degeneração se começa a notar. Diz-se que o material está parcialmente degenerado. Se o valor é grande e positivo o material está altamente degenerado. Isto acontece quando as densidades são elevadas ou também quando as temperaturas são baixas.
    Desta equação se podem deduzir as integrais do número de partículas, a pressão que exercem e a energia que têm. Estas integrais são possíveis de serem resolvidas analiticamente quando a degeneração é completa.
    x






    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    O valor da energia das partículas dependerá da velocidade das partículas, a qual decidirá se se tem-se um gás relativista ou não. No primeiro caso se usarão as equações de Einstein e no segundo valerá a aproximação clássica. Como se pode ver, as relações energia-pressão variam significativamente, sendo maiores as pressões obtidas com a degeneração completa não relativista. É lógico, já que a matéria relativista é mais quente.
    • Matéria degenerada não relativista (NR)
    • x





    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    • Matéria degenerada extremamente relativista (ER)
    • x





    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    As estrelas típicas com degeneração são as anãs brancas e as anãs marrons sustentadas por elétrons e as estrelas de nêutrons sustentadas por nêutrons degenerados. Considera-se que sua temperatura tende a 0, já que não possuem fonte de calor alguma. Suporemos estes corpos com um parâmetro de degeneração tendente a +infinito.












    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D